目次

まえがき

発刊にあたって

第1章 リモートセンシングはどんな技術なの？センサーの仕組みと
衛星の受信方法

1.1 リモートセンシングってなん？ .. 3
1.2 リモートセンシングの特徴 .. 4
1.3 デジタルカメラの仕組み ラフォージ少佐の目 5
1.4 カラーコピー機の仕組み ... 6
1.5 アナログvs.デジタル インスタント証明写真とプリクラ写真の違い 7
1.6 デジタルの利点 .. 8
1.7 人間の目と比べてみよう その1 視力 .. 9
1.8 倍率とかたち ... 10
1.9 人間の眼と比べてみよう その2 点描画 ... 11
1.10 ものの見え方 視力・地上分解能・倍率・縮尺の関係 12
1.11 人間の目と比べてみよう その3 動体視力 ... 13
1.12 撮影間隔 .. 14
1.13 人間の目と比べてみよう その4 色覚1 地球は青かった… 15
1.14 色を識別することは？ ... 16
1.15 人間の目と比べてみよう その5 色覚2 色にも色々ありまして 17
1.16 色の濃淡 .. 18
1.17 リモートセンシングのしくみ 色のまとめ 19
1.18 光と電磁波 ... 20
1.19 衛星が観測する波長とは ... 21
1.20 日本上空の気象衛星のセンサーの特徴 22
1.21 どうやってみるの？画像（写真）の撮り方 23
1.22 一般的な撮影方法 ... 24
1.23 衛星のための手ぶれ補正 ジャイロスコープとスタートラッカー、GPS 25
1.24 どこをみているのか .. 26
1.25 センサーの点検方法 月見をするセンサー 27
1.26 ルナキャラリブレーション .. 28
第2章 どうすれば衛星画像を見ることができるのか？
データの入手、表示法とフォーマットやアーカイブの話
2.1 衛星データを入手するには？ 39
2.2 フリーのデータ .. 40
2.3 NASAのページの利用例 http://daac.gsfc.nasa.gov/data/ 41
2.4 自分で処理してみよう 無料だからといってあらゆるフリーソフト 47
2.5 実際に見てみましょう 48
2.6 もう一度色の話 .. 51
2.7 カラー画像表示 .. 52
2.8 01の羅列を画像にするまで いわゆる前処理 53
2.9 処理データ ... 54
2.10 誰でも使えるデータにするために 衛星画像のフォーマット 55
2.11 フォーマットのあれこれ 56
2.12 衛星画像を保存するには—1 衛星画像はフロッピー何枚分？ 57
2.13 衛星のデータサイズ 58
2.14 衛星データを保存するには—2 データマイニング 59
2.15 超大量衛星データベース メガギガなんて目じゃない 60
オープンソース（フリーソフト）データ処理ソフト 61

第3章 どんなセンサーからどんな衛星画像が撮れるの？
色々なセンサー（温度、SAR、ハイパーなど）とアプリケーション
3.1 MODISの波長とその他のセンサーの波長の比較 65
3.2 地球環境観測衛星 66
3.3 デジタル温度計 .. 67
3.4 温度刻み ... 68
3.5 特殊なセンサー その1 マイクロ波 69
3.6 マイクロ波 ... 70
3.7 特殊なセンサー その2 ハイパースペクトル 71
3.8 光明神（Hyperion） 72
第4章 衛星画像からどんな地図が作れるの？衛星と地図の関係

4.1 地球の形...109
第5章 どんな人工衛星が使われているの？

5.1 人工衛星とリモートセンシングの関係 131
5.2 プラットフォーム .. 132
5.3 アメリカの衛星とセンサー ... 133
5.4 AVHRRセンサー .. 134
5.5 TERRA衛星とセンサー .. 135
5.6 AQUA衛星とセンサー .. 136
5.7 LANDSAT衛星 .. 137
5.8 TERRA/ASTERセンサー .. 138
5.9 日本の人工衛星の歩み .. 139
5.10 ALOS ... 140
5.11 アジアの衛星開発 .. 141
5.12 アフリカの衛星開発 .. 143
5.13 カナダの衛星RADARSAT ... 144
5.14 ロシアのSPIN-2 ... 145
5.15 ヨーロッパのリモートセンシング 146
5.16 SPOT衛星 ... 147
5.17 商用衛星 IKONOS .. 148
第6章 衛星リモートセンシングの現在未来

6.1 宇宙を取り巻く国際的な取り決め 宇宙での法律？ 159
6.2 地球観測における国際協力 ... 160
6.3 宇宙のゴミ問題 .. 161
6.4 静止軌道のゴミ .. 162
6.5 地球地図とデジタルアーツ ... 163
6.6 デジタルアジアネットワーク構想Digital Asia Network（DAN） 164
6.7 リモートセンシングと政治・経済 ... 165
6.8 日本国のリモートセンシング開発を取り巻く政治経済 166
6.9 リモートセンシングと安全 .. 167
6.10 日本の情報収集衛星 ... 169
6.11 リモートセンシングってビジネスになるの？ 商用衛星の可能性 170
6.12 高分解能（30m程度）の今後 ... 171
6.13 プライベート衛星 マイクロサットって知っていますか？ 172
6.14 ビジネスターゲットの例 RapidEyeのビジネスターゲット 173
リモートセンシング関連エトセトラ ... 175

あとがき

著者略歴

本文およびCD-ROMについての注意事項